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eigenfrequencies and the distribution of the vibrational velocity as a function of the 
inhomogeneity parameters. 
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METHOD OF EXTRACTING SINGULARITIES IN THE PROBLEM 

OF THE HYDROELASTIC VIBRATIONS OF A SHELL EXCITED BY CONCENTRATED FORCES* 

S.P. BORSHCH, A.L. POPOV and G.N. CHERNYSHEV 

An asymptotic justification for the procedure /l, 2/ of matching the 
integrals of the vibrations of a shell and the Helmholtz equations for 
the acoustic pressure is given in the example of the problem of the 
vibrations of a closed spherical shell in an infinite medium, excited by 
forces applied at the poles of the shell. The order of constructing the 
approximate solution, based on replacement of the fluid influence by 
several apparent masses each of which is related to a specific inteqral 
of the shell equations, and on extraction of the singularities of the 
solution at the point of application of the force, is traced. The 
results are compared with the exact solution of the problem in the form 
of series in spherical functions /3/. 

1. We will write the original system of equations of the axisymmetric vibrations of a 
spherical shell and an ideal compressible fluid while separating out the time dependence, 
given in the form e-10t in the functions of the load 2, the acoustic pressure p and the 
shell displacements u and w 

(1 + Y) LL'," - a),,~, - (1 - Y) pOu = 0, (I, = sin-'0 (U sin IQ, (1.1) 

[r*-(l-v)W]W- c*2 ~+--(&-U'p)wJ-$-(z-~p(s) 

t2p + (r*p, ,), p + (kr)? p = U, lirn r(p. )_ - ilzp) = lJ 
7-m 

p,r 1s = o+m, a0 = COT,, (p,/E)“x, k = o/c 
p,, = 1 + a02 (1 + Y), D = 2Eh3/[3 (1 - +)I 

csz = 2Ehr,*/D, T2 = ( ),eo + ctg 8 ( ),e, ( ),= = a/ax 

Here r and 0 are spherical coordinates (1. = r0 is the equation of the shell surface S), 
h is half the shell thickness, w is the angular frequency of the vibrations, ~0, E, y are 
the density, Young's modulus, and Poisson's ratio of the shell material, and p and c are the 
density and velocity of sound in the fluid. 

One of the effective approximate methods of solving two-dimensional problems of the 
type (1.1) is to reduce them to a one-dimensional problem on the shell surface by using an 
exponential representation of the fluid pressure integrals in the neiqhbourhood of the shell 
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/l, 21. Setting 

P (rr 0) = P (rm O) exp I--a (r - r,,)l, Re a > 0 (1.2) 

where a is a previously unknown damping factor, and substituting this representation into 

the condition of non-penetration (1.11, we obtain a relation between the fluid pressure func- 
tions on the shell surface and the deflection 

p (rO. (3) = --ozpa-'w (e) (I.31 

by means of which the function p(rO, 6) is eliminated from the equations of the shell vi- 
brations. The original problem is thereby reduced to constructing the solution of a system of 
equations of the vibrations of a shell with certain attached masses. 

The simple exponential representation (1.2) has an asymptotic justification. We will 
examine the exact solution of the Helmholtz equation for the acoustic pressure in a direction 
normal to the shell. For a number n.of half-waves along the meridian this solution has the 
form of a spherical Hankel function h,(l)(z), z = kr. Depending on the relationship between the 
argument z and the index n, two kinds of asymptotic forms AR(i) (z) are possible in the 
neighbourhood of the shell. For IZ > zO, z,, = kr,, the behaviour of h,,(l) (z) at any distance 
from the shell is described by the uniform asymptotic exapansion /4/ 

h,(i) (z) = I/‘l,nlzH,(‘) (qz,), q = n + ‘12, QZI = z (1.4) 
~~(1) (pzl) = &-x+3 145 (1 - z,z))'l'/'q-'/aAi (to) Ll + 0 (q-i)1 

The zero of the argument of the Airy function Ai (to) in this expansion determines 
the location of the spherical transfer surface in the space occupied by the fluid /5/. Between 
the shell and the transfer surface the real and imaginary part of the functions 

2e-miiz Ai = Ai (t) - i Bi (t), t = ~'/'j 

vary according to a law close to the exponential law 

Ai (t) = i/,n-‘l&‘~ exp (-j,) (1 + 0 (q-l)) (1.5) 

Bi (t) = n-‘l+“d exp(Q(1 + 0 (Q-I)); 
ll/l--I' 

51 = Q 1 rdz 
5 

They oscillate with slow damping outside the limits of the transfer 

Substituting the function h,(i)(z) into system (l.l), we obtain the 

term 

surface. 
following inertial 

(1.6) 

at the site pls. 
Taking account of the asymptotic representations (1.4) and (1.51, we represent the 

approximate expression for the fluid associated mass coefficient (AMC) in the form 

pa = g [i/2 + f/42 - z02 (1 - i&)1_', E = exp (-25,) 

Eo = E1l*=z. 

(1.7) 

(it is taken into account that the inequality exp(-2&,)<4exp (25")) is satisfied at some 
appreciable distance of the transfer surface from the shell). It is hence seen that the 
acoustic pressure component damped out exponentially deep in the medium introduces the pre- 
dominant contribution to the magnitude of the AMC for large variability of the solution in 
the meridian direction. 

When the inequality Q > z0 is conserved the asymptotic representation (1.7) yields the 
correct estimate of the AMC even for small values of the frequency parameter zO down to zero. 
Indeed, for small zO and n > zo the exact value of the AMC in (1.6) tends to the analogous 
value for an incompressible fluid u = g (1 + n))' [1 + 0 (z,Z)l. Letting z, in (1.7) also tend 
to zero, we obtain that &+M, a+-0 and p.+g(l+n))', i.e., un=p even as zo + 0. 

In the case when zo > n there is no transfer surface in the fluid. Consequently, the 
wave asymptotic form of the function h,(l)(z) is set up directly on the shell surface. Using 
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a Hankel binomial asymptotic expansion ((9.2.7) and (9.2.13) from /4/) for the functions 
H,(l) (z) and H4(1)‘(z), we arrive at the following formula for the AMC: 

P = g (1 - izJ' (1.8) 

This formula can also be continued in the low frequency range with the inequality zO> n 
conserved. In fact, as n-t0 

-zh,('Y (2)/h,(') (2)--t zh$i) (2)/h,(') (2) = 1 - iz 

Therefore, (1.7) and (1.8) yield asymptotic representations for the AMC that are uniform 
in the frequency and variability of the solutions for two characteristic combinations between 
the variability parameters n and the frequency zO. Integrals of primarily bending, rapidly- 
varying vibrations modes correspond to the inequality n> z,,, and slowly varying integrals 
with a predominance of the tangential shell displacement vector components correspond to the 
condition n<z,* (* Golovanov, V.A., Muzychenko, V.V. Peker, F.N. and Popov A.L. The 
scattering and radiation of sound by elastic shells in a fluid. Preprint No. 261, Inst. 
Problem Mekhaniki Akad. Nauk SSSR, Moscow, 1985.) 

2. We will use the representations obtained for the AMC to construct the integrals for 
the original system (1.1). 

We introduce the characteristic index sz =q (q +I) (q is not necessarily an integer) 
of the system (1.1) on the shell surface. For this we use the resolving equation 

A2w + SOW = 0 (2.1) 

into which the Helmholtz equation transfers on the contact surface when p(r,,, 0) is replaced 
by w(9) in the form (1.3). Assuming the characteristic index s2 to be identical for both 
the shell displacement vector components and for the fluid pressure on its surface, we arrive 
at the characteristic equation 

(1 + v) (1 - Y)-+*Y - [SZ - (1 - v) ILo1 [sz (SZ + 1 - Y) + (2.2) 
c*2(2(1 -v)_'- a*Z)l = 0 

cc*2 = co2 (1 + P) 

in which the quantity u is related to s2 by (1.7) or (1.8) (for u = 0 Eq.(2.2) is identical 
with the known characteristic equation in the case of spherical shell vibrations in a vacuum 
/6/J. 

We will use the asymptotic AMC representation in the form (1.7) to determine the character- 
istic indices of rapidly varying integrals. A complex transcendental equation in ~2 is 
obtained on substituting (1.7) into (2.2). Let us consider the asymptotic procedure to 
determine the roots of this equation by using the smallness of E. 

We first take E = 0, which corresponds to the initial exponential representation (1.2) 
in which only the acoustic pressure components being damped from the shell are taken into 
account. Expressing s2 in (2.2) in terms of a (in the principal approximation s2 = a"), we 
arrive at a characteristic equation of the seventh degree 

B0 + Brs t- . . . + B,s’ = 0 (2.3) 

whose coefficients are obviously expressed in terms of the coefficients of (2.2), where some 
of them (for the lowest powers of s) contains the large parameter caz. Certain roots of (2.3) 
are "large" compared with the other roots and the rapidly varying integrals of system (1.1) 
correspond to it. 

Analysis of the roots of (2.3) using the Routh-Hurwitz criterion shows that three out of 
the five large roots have a positive real part that satisfies the condition of damping of the 
integrals (1.2) with distance from the shell. One of them (sJ is real and positive, the 
other two (s~,~) are complex conjugates with positive real part. Oscillating integrals of 
the resolving Eq.(2.1) correspond to the root s,, and integrals of the edge-effect type that 
damp out with oscillations in the neighbourhood of points of application of the force cor- 
respond to the roots s?,~. 

The value of the root s1 obtained from the equation of the seventh degree should be 
considered as the initial approximation to the real root (sl = s,(O)). Newton's method 

sIR+l) = S1@) - f/(df/ds) I,+)' k .= 0, 1, 2 . . . (2.4) 

is used later to solve the equation f(sl, p (A-,)) = 0, where f (% P (d) is the left-hand side 
of (2.2) while P = gs;' (1 + ie @I)). 

The first step in this iteration process can be written in explicit form. Let u0 be 
the AMC value corresponding to E = 0 (i.e., the initial appoximation for sr). Let us set 
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p(‘) = p(O) (1 + ie) and, respectively, s+I) = sl@)(l + is), where 6 is an unknown small par- 
ameter and let us substitute these expressions into (2.2). Retaining first-order infinitesimal 
terms, we obtain a relation between e and 6 

Carrying out the refining procedure for the characteristic indices of edge effect type 
integrals corresponding to the complex roots &,s, Ilea,.,>> 0 has no value in principle since 
these indices possess large imaginary parts commensurate with the real parts in the original 
approximation (e = 0). 

Small roots of (2.3) are not taken into account when constructing the rapidly varying 
integrals. The characteristic indices for the slowing varying integrals are determined 
directly from (2.2) since the AWC (1.7) does not contain unknown parameters. Because integrals 
of this kind can be constructed from a membrane system /7/, we obtain an explicit expression 
for the corresponding root of (2.2) (denoted by sh2) 

s4= = PO 
2-a**(i-v) 

I-a*a ’ a*2=a$(f++-) 

3. We now turn to the construction of the integrals of the resolving system. TWO 

linearly independent integrals of the resolving Eq.(2.1) correspond to each of the values of 
the characteristic indices sj2 0' = 1, . . ., 7). The Legendre functions P,(H), t = cos 8 /8/ 
can be selected by such integrals for non-integer indices q(s2 =q(q +I)). 

We will represent the general integrals of system (1.1) for the functions of the 
deflection w (8), meridian displacement u(8), andfluid pressure on the shell surface p(r,,, 8) 
in the form of sums of rapidly and slowly varying integrals 

F, (e) = cj+Poj (t) + Cj-Pq, (-t), fj = (1 + v) [(I - v) PO - sf21-’ 

where c$ (j = 1 
and pi are the'kC: 

N) are arbitrary constants, sj2 are roots of the characteristic Eq.(2.2), 

We will set up the necessary number (N) of integrals Pqj(ft) (j =I, . . . . N) by starting 
from the requirement that the general solutions for w(8) and u (8) have regular singular- 
ities at the points of concentrated application of the force. The order of the principal 
singularity of the fluid pressure function on the shell surface should not, as follows from 
(1.1) and (1.3), exceed the analogous index for the shell deflection function. 

The main singularities of shell displacement functions under static application of con- 
centrated forces are classified in /9/. The inertial components (shell mass and associated 
mass of the fluid) do not increase the order of the main singularity of these functions. For 
a given method of external load application the main singularity of the dynamic deflection 
function of a shell making contact with a fluid is the same at the upper pole as for a plate 
under axisymmetric loading x (r08)2in8,x = Q/@nD) (Q is the amplitude of the force),the function 
u (8) has no singularities at the shell poles. 

The expression for the main singularity of the function P Is at the point of application 
of the force can also be estimated by starting from the solution of the problem about the 
action of a periodic force on an infinite plate lying on a liquid half-space /lo/. Omitting 
the intermediate calculations, we obtain the followingexpressionfor the main singularity pja 

x1 (roe)? in 8, xl = --XD-1 (0zp/i92)2 

Comparing it with the corresponding formula for the shell deflection function shows that 
the order of the singularity of the fluid pressure function is significantly lower. 

It follows from expansions of the Legendre functions in the neighbourhood of t = i-1 /8/ 
that they have logarithmic singularities at the shell poles (Pn(-t) at the upper pole and 
p, (t) at the lower pole) of higher order than there should be for solutions for the shell 
displacement and fluid pressure at the points of application of the force. We require the 
satisfaction of the following conditions to separate the regular singularities in the solution 
(2.5): the coefficient of In8 and In (n - 8) must be equal in the expansions of w (8) and 
P (b 9), as must the coefficient of (rJJ21n 8 (and for r02 (x - Q21n (n - 8)) respectively) 
to a known value of x. in the expansion of w(8). The coefficients for 8-i(8-+ 0) and(n - 8)-*(8-t 
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n) should vanish in expression u(e). 

Taking into account the order of the singularity for the pressure that is lower than for 
the deflection, satisfaction of the additional conditions that the coefficients of 
and rgn (n - O)l'ln (n - 6), n = 2, 4, 6 

(roA)n In 0 
in the expansion of the pressure function should be zero 

should also be required. However, this necessitates taking into account additional integrals 
that can be obtained when taking acount of large complex-conjugate roots s~,~ with negative 
real parts for the characteristic Eq.(2.3). Integrals of the Helmholtz equation that damp out 
with distance from the shell can also be setincorrespondence with these roots, as follows 
from the properties of the Legendre function: p, (2) = p-q-, (2) /4/. 

Since the approximate relationship Sj=aj=~~qj(qjTI)--.qj holds for large roots sir 

where aj is one of the acoustic pressure damping factors deep in the fluid, two pressure 
damping factors qa and -qb - 1 will correspond to an identical integral of the meridian 
solution (the fifth, say). Consequently, despite the fact that Re qj<O, the index a>= 

--S-l ensures the damping nature of the representation (1.2) for the pressure integral 
corresponding to the fifth shell integral. 

Therefore, to extract singularities of the shell displacement vector components, integrals 
corresponding to the roots S1r . . .1 sp are sufficient. To extract the singularities of the 
pressure function the roots s~.~(R~ s~,~ (0) are used in addition, to which the Helmholtz 
equation integrals that damp with distance from the shell also correspond (note that the 
appearance of additional linearly independent integrals P-4i-1, P&, is due exclusively to 
the presence of terms in the characteristic equation corresponding to the influence of the 
fluid). Consequently, a system of twelve algebraic equations is obtained for determining the 
constants cjf(j = 1, ., 6). 

The solution (2.5) will be symmetric (antisymmetric) in w(6) and P (rO, 6) with respect 
to the equator for identical force amplitudes at the upper and lower poles and coincident of 
opposite loading phases, while the constants will satisfy the equalities 
f = 1, . . ., 6. 

cj+ = +c,* = &Cj, 
In these cases the determination of the constants reduces to sol&g a system 

of six equations. 
When a shell is excited by one concentrated force applied to the upper pole, say, ex- 

pressions (2.5) for the elastic displacements and fluid pressure on the shell surface remain 
unchanged, but the formulas for F,(6) are written without the functions and the 
number of constants is reduced to six. 

p,, (0 

4. The approximate solution constructed was compared with the known exact solution in a 
series in spherical functions /3/. Expansions of the deflection, and pressure functions on 
the surface in the case of shell excitation by two in-phase forces concentrated at the poles 
have the form (summation over k=0,2,4,...) 

w(e) = 
1-v= o 
--K--K c 

(k + 'is) P, (co8 0) 

bEk-Ah ’ (4.1) 

A, = (1 -+I [nci2 (I - Y -n) + a;]- 2 (i + v) + n 
(1-v~)c~%+l+v 

n=k(k,-I) 
n-l+v-a~~(l-v*) ’ 

There is a small coefficient c*-' for the term in Ak, that is proportional to 9 and 
ensures convergence in the terms of the series (4.1). Consequently, it would be necessary 
to retain a large number of terms (up to 2000) in the series for a numerical realization of 
the representation (4.1). Confirmation of the accuracy of the computations performed by using 
(4.1) is obtained by substituting these expressions into the Kirchhoff integral formula for 
the fluid pressure on the shell surface 

In view of the fact that the integrand has a weak singularity at M= M,,,quadrature 
formulas are used that are obtained by replacing the integration variables e,'p by the 
introduction of a system of polar.coordinates with centre at the singular point M,. Since 
the Jacobian of such a transformation tends to zero as the running point M tends to M, at 
the same rate as the distance between MO and M, the singularity is eliminated. Modifying a 
quadrature formula, of Gauss type, say, by using this replacement of the node and weight, we 
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obtain a formula suitable for evaluating the Kirchhoff integral at the point Mn. 
Computations showed that the residual between the Kirchhoff integral and the expansion 

(4.1) of the pressure function is not more than 3.5% in the magnitude of the maximum amplitude 
at the non-resonance frequency along the whole arc of the meridian. 

The exact and approximate solutions were compared according to the magnitudes of the 
resonance frequencies and the amplitude-frequency dependences (AFD) for the deflection and 
fluid pressure functions at the lower pole during concentrated force loading at the upper 
pole. In this case the Legendre functions P,j(cos6) do not occur in the expression for the 

solution while the functions P,j(- cos0) equal unity at the lower pole; consequently, the error 
of the approximate solution can be estimated "in pure form". 

The following shell and fluid parameters were taken: h = 0.5cm, r,=lOOcm, v = 0.33, (Jo = 

7.35 g/cm3, E = Z.06.10" Pa, p = 1 g/cm3 , c = 1530m/s. The amplitude of the exciting force Q was 
taken equal to 980 N. 

Computations were performed for both compressible and incompressible fluids. In the 
case of the incompressible fluid the method of extracting singularities enables the exact 
values of the AMC and the resonance frequencies to be determined since the characteristic 
indices g= q(q+ 1) are associated with the ANC by the relationships P= g(1+ q)-I. 

Resonances values of the parameter Q = a,(l-v~~~ and the apparent mass coefficient u 
are presented in the table. For a dry shell R=9,. while for a shell in an incompressible 
fluid D = 62,. The values of Rt,n,,pLt.P, are computed for a compresible fluid: Gt, Pi are 
obtained from the exact solution (4.1) while S& and p,, are obtained by the approximate method. 
The number of half-waves n along the shell meridian is indicated in the first column. 

The accuracy achieved in de ermining the resonance frequencies is ensured by not more 
than six iterations of the process (2.4) (for the first frequency). As the frequency rises, 
the requisite number of iterations is reduced sharply. Note that if we confine ourselves to 
the step (2.5), then the greatest error in determining the resonance frequency will increase 
insignificantly: by less than 1.2% for the first resonance. 

A fragment of the AFD is represented in 
the upper part of the figure for the deflection 

Iwl 
at.a shelllowerpole in an incompressible fluid 
that enclose the band of the first resonance 
frequencies. It is seen that the solution in 
series (the dashed line) and the solution by 
the method of extracting singularities (the 
solid line) are practically identical. In the 
lower part of the figure we show the AFD for 
the pressure at the lower pole of a shell sub- 
merged in a compressible fluid. The value of 
R, is plotted along the abscissa axis and the 
pressure level in decibels along the ordinate 
axis. The solid line corresponds here to the 
series solution, while the dashes correspond to 

0. 4 a.vzJ 0.5 a the solution by the method of singularity 
extraction. The AFD for the approximate and 
exact deflection functions have a form similar 
to that presented. 

The testing carried out enables an analgous approximate approach to be used to solving 
problems of the vibrations of closed shells of revolution with arbitrary meridian outline in 
a fluid when excited by concentrated loads, since the method of singularity extraction remains 
the same, in principle, while the asymptotic solution of the Helmholtz equation constructed 
using Airy functions, as is done in /5/, say, can be used to construct the asymptotic forms 
of the fluid associated mass. 

REFERENCES 

1. POPOV A.L. and CHERNYSHEV G.N., Shortwave vibrations of a closed shell in a fluid, excited 
by a circumferential normal force, Modern Prolems of Mechanics and Aviation, 



518 

Mashinostroenie, Moscow, 1982. 
2. POPOV A.L., Axisymmetric vibrations Of shells of revolution in a fluid under concentrated 

actions, Izv. Akad. Nauk SSSR, Mekhan. Tverd. Tela, 5, 1983. 
3. HAYEK S., Vibration of a spherical shell in an acoustic medium, J. Acoust. Sot. Amer. 40, 

2, 1966. 
4. ABRAMOWITZ M. and STEGUN M, (Eds.)., Handbook on Special Functions with Formulas, Graphs, 

and Mathematical Tables, Nauka, Moscow, 1979. 
5. POPDV A.L. and CHERNYSHEV G.N., Transfer surfaces for shortwave Vibrations of an ellipsoidal 

shell in a fluid, PMM, 49, 5, 1985. 
6. LUZHIN O.V., Axisymmetric vibrations of spherical cupolas under different boundary con- 

ditions. Investigations on the Theory of Structures, 11, Gosstroiizdat, Moscow, 1962. 
7. GOL'DENVEIZER A.L., LIDSKII V.B. and TOVSTIK P.E., Free Vibrations of Thin Elastic Shells. 

Nauka, Moscow, 1979. 
8. ANGOT A., Mathematics for Electrical and Radio Engineers, Nauka, Moscow, 1965. 
9. CHERNYSHEV G.N., Representation of Green-type solutions of the shell equations by the 

small-parameter method, PMM, 32, 6, 1968. 
10. TAMM I.E. and BREKHOVSKIKH L.M., On the forced vibrations of an infinite plate abutting 

on water, Zh. Tekh. Fiz., 16, 8, 1946. 

Translated by M.D.F. 

PMM U.S.S.R.,Vo1.54,No.4,pp.518-522,199O 0021-8928/90 ~$lO.OO+O.OO 
Printed in Great Britain 01991 Pergamon Press plc 

REFINED MEMBRANE THEORY OF ELECTROELASTIC SHELLS* 

N.N. ROGACHEVA 

An analysis of the membrane electroelastic state and the determination of 
the first vibration eigenfrequencies are often of particular interest in 
the analysis of thin-walled elements. It is shown how the error of 
membrane theory can be reduced considerably by introducing certain 
additional terms into the membrane boundary conditions. 

1. To be specific, we will examine piezoceramic shells with thickness polarization. We 
will write the equations of the theory of the bending of piezoelectric shells to an accuracy 
of quantities of the order of (11' T ?j*-"), where t is the index of variability of the funda- 
mental electroelastic state, and '1 is a small parameter equal to the ratio of half the shell 
thickness h and its characteristic dimension R: 

The equations of equilibrium: 

1 aGi 1 aH.. 
Ni=TT-TiJ- aa, L + k, (Cl - Gj) - 4 (H,j + E-lji) 

(ki = (A,‘4,)-’ i3Ai/8cz,) 

(1.2) 

(the quantity p in (1.1) should be assumed equal to one; it is required later); 

the electroelasticity relations: 
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